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Abstract
The rate of infertility has globally increased in recent years for a variety of reasons. One of the main causes of infertility in 
men is azoospermia that is defined by the absence of sperm in the ejaculate and classified into two categories: obstructive 
azoospermia and non-obstructive azoospermia. In non-obstructive azoospermia, genital ducts are not obstructed, but the 
testicles do not produce sperm at all, due to various reasons. Non-obstructive azoospermia in most cases has no therapeutic 
options other than assisted reproductive techniques, which in most cases require sperm donors. Here we discuss cell-based 
therapy approaches to restore fertility in men with non-obstructive azoospermia including cell-based therapies of non-
obstructive azoospermia using regenerative medicine and cell-based therapies of non-obstructive azoospermia by paracrine 
and anti-inflammatory pathway, technical and ethical challenges for using different cell sources and alternative options will 
be described, and then the more effectual approaches will be mentioned as future trends.
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Introduction

Male factors account for about 50% of couples’ causes of 
infertility. Among these, non-obstructive azoospermia 
(NOA) constitutes 10–15% of male infertility and 60% of 
azoospermic men, with an impaired spermatogenesis lead-
ing to a lack of sperm in ejaculation. NOA has been shown 
to occur as a result of congenital or genetic abnormali-
ties, endocrine disorders, varicocele, trauma, exposure to 

gonadotoxins, infectious agents, chemotherapy drugs, and 
idiopathic causes [1].

The etiology of NOA is generally categorized into two 
origins: primary hypogonadism due to primary testicular 
failure and secondary (hypogonadotropic) hypogonadism 
due to hormonal abnormality [2].

In secondary hypogonadism, hormone replacement ther-
apy can be administrated to stimulate spermatogenesis and 
restore fertility with or without the need for surgery [3].
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In primary hypogonadism of NOA the main focus of 
treatment is on sperm retrieval through testicular sperm 
extraction.

Therefore, as long as genetic abnormalities such as Klinefel-
ter syndrome and Y chromosome microdeletion do not cause 
primary testicular failure and are not the main cause of infertility, 
NOA patients can benefit from hormonal or surgical treatments.

On the other hand, despite hormonal or surgical therapeu-
tic methods, the outcomes of NOA treatments, especially for 
primary testicular failure, are usually unsatisfactory. In pri-
mary hypogonadism of NOA, if sperm could not be retrieved 
by testicular sperm extraction, the only current option relies 
on using donor sperm or adoption which deprives couples 
of having a related biological child.

The larger category of primary testicular failure of NOA 
is due to idiopathic or inflammatory causes for which there 
is no effective treatment option [4].

Nowadays, cell transplantation can be used to treat male 
infertility, especially for the treatment of NOA, in two ways: 
one from regenerative medicine view and for treatment 
resulting from failure of germ cells proliferation and differ-
entiation and the other with the help of their paracrine and 
anti-inflammatory effects for treatment of NOA resulting 
from idiopathic and inflammatory problems.

Now we will discuss here about the cell-based therapies for 
NOA using therapeutic approaches of stem/stromal cells based 
on regenerative medicine and the paracrine mechanisms.

Cell‑Based Therapies of NOA Using Regenerative 
Medicine

From a regenerative medicine view, there are two experi-
mental approaches in which germ cell colonies can be pro-
duced for restoring fertility in men with NOA: (1) in vivo 
approach in which spermatogonial stem cells (SSCs), as the 
precursors to mature spermatids, are transplanted into the 
seminiferous tubules of infertile individual. (2) Based on 
in vitro studies, in addition to SSCs, embryonic stem cells 
(ESCs) [5], induced pluripotent stem cells (iPSCs) [6], and 
mesenchymal stem cells (MSCs) [7] can be cultured in vitro 
and differentiated into male germ cells.

In the following, restoring fertility in men with NOA 
using mentioned cell sources will be discussed (Fig. 1a).

Spermatogonial Stem Cell Transplantation

SSCs are able to self-renew, differentiate, and regener-
ate spermatogenesis. To regulate the process, close inter-
actions between SSCs and Sertoli cells surrounding the 
SSCs, and the creation of a microenvironment called the 
stem cell niche is essential.

Previously, Lim et al. found SSCs in the testes of NOA 
patients and isolated and cultured them under exogenous 
feeder-free culture conditions. After long‐term culture, 
SSCs could be differentiated to male germ cells with 
developmental potential [8].

Generally, strategies for using SSCs to restore spermat-
ogenesis and fertility include (1) harvest and grafting of 
testicular tissue and (2) injection of isolated SSCs.

For successful testicular tissue grafting, based on previ-
ous studies, SSCs cryopreservation via slow freezing with 
dimethyl sulfoxide, grafting time after sexual maturity of 
patients, grafting location in the scrotum, and high levels 
of gonadotropins, luteinizing hormone (LH) and follicle 
stimulating hormone (FSH), are ideal requirements.

Although testicular tissue grafting is very optimal in that 
the natural niche of stem cells is retained, in some cases, such 
as cancer patients, it needs to be more optimized because of 
concerns about cancer cell contaminations [9–11].

For injection of isolated SSCs, among the injection targets, 
including seminiferous tubules, rete testis, and efferent ducts, 
rete testis injection with guidance of ultrasonography seems to 
be the most promising injection technique to date [12].

Following transplantation, SSCs migrate to the base-
ment membrane of seminiferous tubules.

One of the advantages of this method over the testicular 
tissue grafting is that it can provide conception without 
the need for assisted reproductive techniques (ART) [13].

SSCs can be differentiated into germ cells through 
in vitro spermatogenesis; in this way, testicular tissues 
or isolated SSCs can be cultured for days and developed 
into spermatids. As previously, Lim et al. found SSCs in 
the testes of NOA patients and isolated and cultured them 
under exogenous feeder-free culture conditions. After 
long‐term in vitro culture, SSCs could be differentiated to 
male germ cells with developmental potential [8].

However, despite promising research results of SSC 
transplantation-based therapy in animals specially in rodent 
models for restoring infertility, translating this approach 
to the clinic needs to be optimized in human models from 
different aspects including SSCs culture condition, cancer 
cells contamination in cancer patients, cryopreservation of 
the SSCs, ideal injection site for transplantation, safety of 
transplantation in recipients, frequency of injection, efficient 
SSCs volume, and dose for injection [12].

Thus more clinical researches are required to overcome these 
challenges for SSC transplantation-based therapy for NOA.

Embryonic Stem Cells

Due to the high differentiation potential of ESCs and the 
ability of these cells to produce germ cells with more effi-
ciency and more autonomy, ESCs are more suitable options 
of cell therapy for spermatogenesis disorders in NOA.
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Fig. 1  NOA cell-based therapy. a Approaches for cell-based therapies of NOA using regenerative medicine. b Cell-based therapies of NOA via 
anti-inflammatory and paracrine factors secreted by MSCs and DSCs
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Initially, in mice, it was shown that ES cells can differentiate 
into male germ cells via embryoid body (EB) formation com-
bined with bone morphogenetic proteins (BMP4) or retinoic 
acid (RA) induction. After transplantation into mouse testes, 
ES-derived cells during spermatogenesis generate sperm [14].

Next studies also demonstrated the differentiation poten-
tial of ESCs to male germ cells, and that EB microenviron-
ment supports male germ cell development and capacity of 
fertilizing oocytes [7, 15–17].

Thus, using ES cells to produce male primordial germ 
cells has promising applications for male infertility treatment 

in NOA. However, regarding the use of ESCs in infertility 
treatment, sperms derived from ES cells would be genetically 
unrelated to the patient. Moreover, limited sources of human 
ES cells, ethical challenges, and governmental concerns are the 
main barriers for their clinical applications [18].

Induced Pluripotent Stem Cells

Another source of pluripotent cells in addition to ESCs 
and SSCs is induced pluripotent stem cells (iPSCs). In 
comparison with ESCs, iPSCs are free of ethical concerns; 

Fig. 1  (continued)
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moreover, they have provided powerful means for personal-
ized cell therapies.

Generally, producing male germ cells in vitro from pluri-
potent stem cells like ESCs, SSCs, and iPSCs can be done 
via two methods: embryoid body (EB) formation and the 
monolayer differentiation, in the presence of cytokine and 
growth factors [19].

Thus, patient-specific iPSCs can be established from 
NOA patients and recruited for producing male gametes 
through in vitro culture and transferring into testis tissue to 
restore spermatogenesis in idiopathic NOA without genetic 
abnormalities. But if NOA cases are caused by genetic dis-
orders such as Klinefelter syndrome and Y chromosome 
microdeletion, this platform should be used to produce 
NOA-specific gametes for modeling and evaluating male 
infertility rather than for NOA cell therapy because iPSCs 
generated from NOA patients with genetic disorder showed 
compromised germ cell development potential [20].

Mesenchymal Stem Cells

Among stem cells with ability to differentiate to or induce 
proliferation of germ cells like SSCs, ESCs, and iPSCs, dif-
ferent sources of MSC have been used for this purpose. MSC 
therapy has the potential for direct application in vivo with-
out limitations including immunogenicity, ethical concerns, 
and source scarcity (as in ESCs) or risk of forming teratomas 
and oncological and genetic instabilities (as in iPSCs and 
ESCs) or poor content in the source and isolation and cul-
turing difficulties (as in SSCs) [21–23]. Different sources of 
MSCs especially MSCs from bone marrow, adipose tissue, 
and umbilical cord have been utilized for treatment of azoo-
spermia in preclinical and clinical studies (Table 1) [24–30].

The potential of MSC therapy in treatment of male 
infertility can be exerted in the following mechanisms: (1) 
differentiation into the spermatozoa or merging with the 
endogenous SSCs to recover the spermatogenesis and (2) 
restoration of spermatogenesis via immunomodulatory and 
paracrine effect through secretion of growth factors and 
cytokines [31, 32].

As mentioned above, using MSCs for treatment of NOA 
through differentiation has been performed by different 
research groups. To date, many studies showed that trans-
planted bone marrow-derived MSCs (BM-MSCs) into the 
testis of busulfan-treated infertile animal models could dif-
ferentiate into male germ cell and also Sertoli and Leydig cells 
[29, 30, 33, 34]. BM-MSCs are very similar to Sertoli cells 
and just like them are immune tolerant cells with the same 
embryonic origin. Transplanted BM-MSCs could reconsti-
tute tubular microenvironment and provide the proliferation 
of inactivated germinal cells in the host tubules [35].

Although in an in vivo study, in an autoimmune infertil-
ity mice model, transplanting allogeneic BM-MSCs showed 

immunomodulatory effects on antibody production, but that 
was not a long-lasting immunomodulatory effect [56, 57].

Compared to cells from other sources, BM-MSCs have 
a high ability to proliferate and differentiate, and like all 
MSCs, have immunomodulating properties, but their dif-
ferentiation ability and regenerative effects are greater 
than their anti-inflammatory and paracrine effects. There-
fore, they are more suitable for regenerative purposes, but 
MSCs originating from fetal and perinatal tissues such as 
placenta-derived MSCs (PD-MSC), amniotic membrane 
(AM-MSCs), amniotic fluid (AF-MSCs), fetal membrane 
(FM-MSC), and umbilical cord blood-derived MSCs (UC-
MSCs) have higher properties of immune modulation and 
are more suitable for the paracrine pathway, especially for 
the purpose of immune modulation [58, 59].

MSC therapy of NOA via immunomodulatory mecha-
nism has been successful in different animal studies, [55], 
and is discussed in the next section.

Cell‑Based Therapies of NOA by Paracrine 
and Anti‑inflammatory Pathway

It has been shown that immunological factors and inflam-
matory processes may be responsible for testicular damage 
and male infertility in about 30% of asymptomatic infer-
tile patients [60, 61]. Studies have shown that infiltration of 
immune cells has been observed in at least 20% of testicu-
lar biopsies of infertile patients with azoospermia, which 
means inflammatory infertility has a significant contribution 
to male infertility [62, 63].

Previous studies also showed the presence of immune cell 
infiltration and corresponding inflammatory conditions in 
testicular biopsies of all dogs with NOA including M1 pro-
inflammatory phenotype macrophages and pro-inflammatory 
monocytes and cytokines [64].

In previous studies, biopsies from NOA-affected men 
showed inflammatory lesions (including lymphocytes and 
monocytes/macrophages) associated with impaired sper-
matogenesis, while specimen from patients with OA indi-
cated intact spermatogenesis without inflammation [65, 66]. 
That was also indicated that inflammatory effects can result in 
damage to the testicles and epididymis and that the levels of 
inflammation mediators such as tumor necrosis factor (TNF) 
and Activin A were elevated in human testicular biopsies 
with impaired spermatogenesis [67]. NOA has been also 
observed in 10% of men with acute epididymitis [68]

As mentioned in previous section, MSCs have been 
shown to have immunomodulatory, anti-inflammatory, 
anti-apoptotic, and proliferative effects through secretion of 
cytokines and growth factors.

MSC-derived exosomes, as part of their paracrine factors, 
also have similar functions to MSCs but with the superior 
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properties that is mentioned in the relevant section. In addi-
tion to MSCs and their exosomes, stromal cells isolated from 
decidua, known as decidua stromal cells (DSCs), have simi-
lar properties to MSCs with more potent immunomodulatory 
and anti-inflammatory effects.

In the following sections, the potentials for NOA cell 
therapy using MSCs, MSC-derived exosomes, and DSCs 
through their immunomodulatory and anti-inflammatory 
effects are described (Fig. 1b).

Mesenchymal Stem Cells

Among different source of MSCs including bone mar-
row, adipose tissue, umbilical cord, endometrium, dental 
pulp, and menstrual blood, some of them have superior 
characteristics to others, making them in higher priority 
for cell therapy. For instance, endometrium and placenta-
derived MSCs and adipose tissue-derived MSCs (AT-
MSCs) have superior properties compared to bone mar-
row (BM)-MSCs, including greater immunomodulatory 
effects, higher secretion of cytokines and growth factors, 

and higher proliferation rate. However, many studies that 
have used MSCs for azoospermia have not confirmed that 
MSCs differentiate into spermatozoa or only through par-
acrine effects can induce reconstitution of the testis and 
epididymis tubes and recovery of spermatogenesis [28, 29, 
42, 43, 48, 52, 69].

On the other hand, other studies have shown that MSCs 
are able both to differentiate into germ cells, in vitro and 
in vivo, and to improve the testicular tissue via paracrine 
effects [38, 47, 51, 52, 54].

Some studies have also shown that BM-MSCs were not 
capable of differentiation into spermatozoa [70].

However, it is not yet clear whether transplanted stem 
cells differentiate into spermatocytes, but it can be con-
cluded that if different sources of MSCs are not able to dif-
ferentiate into sperm, they may improve testicular tissues 
and recover spermatogenesis through their paracrine secre-
tions [55, 71].

In proportion to this purpose, using some MSCs sources 
such as placenta-derived MSCs due to their better immu-
nomodulatory effects are more compatible for using in NOA 

Table 1  Preclinical and clinical studies using different sources of MSC for treatment of non-obstructive azoospermia

Preclinical studies
MSC source Non-obstructive azoospermia Animal model Transplant type Reference
Adipose tissue Busulfan-induced NOA Hamster Allotransplant [28]
Adipose tissue Busulfan-induced NOA Rat Allotransplant [25, 29, 36]
Adipose tissue Cisplatin-induced NOA Rat Allotransplant [37]
Adipose tissue Torsion-induced NOA Rat Xenotransplant (human) [38]
Amnion Busulfan-induced NOA Mouse Allotransplant [39]
Bone marrow Busulfan-induced NOA Guinea pig Allotransplant [24]
Bone marrow Busulfan-induced NOA Hamster Allotransplant [26]
Bone marrow Busulfan-induced NOA Mouse Allotransplant [30, 40]
Bone marrow Cisplatin-induced NOA Mouse Allotransplant [41]
Bone marrow Busulfan-induced NOA Rat Allotransplant [27, 33, 42–46]
Bone marrow Doxorubicin-induced NOA Rat Allotransplant [47]
Bone marrow Nitrate-induced NOA Rat Allotransplant [48]
Bone marrow Torsion-induced NOA Rat Allotransplant [49]
Bone marrow Busulfan-induced NOA Mouse Xenotransplant (Goat) [50]
Umbilical cord Busulfan-induced NOA Mouse Xenotransplant (Human) [51–53]
Bone marrow cadmium-induced NOA Rat Allotransplant [54]
Bone marrow food ad libitum-induced NOA Mouse Allotransplant [55]
Clinical trials
MSC source Year/status Location Transplant type References
Bone marrow 2015/completed Egypt Autotransplant NCT02414295
Bone marrow 2014/1 and 2 Egypt Autotransplant NCT02025270
Bone marrow 2013/recruiting Egypt Autotransplant NCT02008799
Bone marrow 2014/1 and 2 Egypt Autotransplant NCT02041910
Bone marrow 2015/1 and 2 Jordan Autotransplant NCT02641769
Adipose tissue 2018/recruiting Russia Autotransplant NCT03762967
Adipose tissue 2019/recruiting Iran Autotransplant IRCT20190519043634N1
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cell therapy through paracrine and immunomodulatory path-
way. Different mechanisms of action by which MSCs can 
induce spermatogenesis in the inflammatory environment 
have been summarized in Fig. 2.

There are promising and valuable results from preclinical 
researches and clinical trials using placenta-derived MSC 
(PD-MSCs) for treatment of infertility-related disorders. 
Placenta-derived MSC as a non-surgical treatment in men 
with Peyronie’s disease [72] and erectile dysfunction [73] 
were evaluated and resulted in outstanding results.

Therefore, it is better to utilize the appropriate MSC 
source purposefully, depending on the etiology of NOA and 
which pathway of treatment is to be used.

Preclinical studies showed that autologous MSCs could 
be transplanted into the testis and migrate and settle down in 
the seminiferous tubules of the basement membrane. Then, 
they can proliferate and differentiate into spermatogonia in 
some seminiferous tubules of the animal model. Also they 
could ameliorate testicular damage through paracrine effects 
such as anti-inflammatory, antioxidative, and anti-apoptotic 
factors [33, 41, 42].

Up to now, not many clinical trials have been recorded 
for cell therapy of NOA (Registered trials: NCT02414295, 
NCT02025270,  NCT02008799,  NCT02041910, 
NCT02641769, NCT03762967, RCT20190519043634N1), 
and none of the registered trials have been fully published 
to treat NOA yet.

Regarding cell-based therapies of NOA using regenera-
tive and differentiation approach, the autologous source of 

MSCs is preferred so that the male germ cell produced by 
MSCs are genetically related. When there is a genetic dis-
ease in the parent, MSC therapy of NOA via regenerative 
and differentiation approach may be preferable using allo-
geneic source of MSC. In this regard, the only challenge is 
producing genetically unrelated male germ cells, which in 
many cases is not accepted by couples. On the other hand, 
along with aging, differentiation potential, viability, and the 
reservoir of MSCs decrease. Therefore, in NOA cell-based 
therapies by the paracrine and anti-inflammatory pathway, 
other options such as exosomes and DSC (low differentia-
tion potential compared to MSC) are suggested as suitable 
alternatives for this purpose [74].

MSC‑Derived Exosomes

MSC-derived exosomes, as part of extracellular vesicles 
(EVs), have similar properties and functions to MSCs but 
have very low immunogenicity and tumorigenicity compared 
to MSCs, with no differentiation potential, and they are well 
tolerated, easier, and more practical to use in vivo. Condi-
tioned media (CM) of MSC culture contains the EVs with 
the same properties of MSCs [75].

In Zhankina et al. study, the effect of EV-contained CM 
in comparison with MSCs was studied for the first time to 
treat non-obstructive azoospermia in the NOA mice models. 
The results showed successful recovery of spermatogenesis 
in all therapy groups with more favorable results in MSCs 
compared with the CM group [55].

Fig. 2  Different mechanisms of action for MSCs in the inflammatory environment to retrieve spermatogenesis. IDO, indoleamine 2,3-dioxyge-
nase; GCS, germ cell-specific
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Other study showed that exosomes isolated from urine-
derived stem cells could facilitate the recovery of spermato-
genesis in busulfan-induced NOA mice [76].

Exosomes can exert their paracrine effects through carriage of 
lipids, proteins, miRNAs, and mRNAs into target cells [77, 78].

They have also proregenerative effects in damaged 
regions directly, just like stem cells [79]. In addition, they 
can regulate the function of target cell through regulation of 
target protein/gene expression [80].

As demonstrated in Guo et al. study, bone marrow MSC 
exosomes could restore spermatogenesis in NOA mice 
model through inhibiting the p38MAPK/ERK and AKT 
signaling pathways [81].

In other studies, exosomes derived from other cell types 
could improve spermatogenesis through above-mentioned 
mechanisms. In Mobarak et al. study, amniotic fluid-derived 
exosomes could ameliorate sperm quality and spermatogen-
esis in NOA rat models. Using exosomes resulted in signifi-
cant increased OCT-3/4 + cells in NOA rats [82].

.Sertoli-derived exosomes could also improve spermato-
genesis through the regulation of oxidative stress in NOA 
mice models.

Based on different preclinical studies, using paracrine 
MSCs-derived exosomes for NOA clinical studies seems to 
be promising [55, 76, 83].

Decidua Stromal Cells

During the start of preparation for pregnancy, significant 
changes in endometrium stromal cells occur following 
decidualization process. The transformed stromal cells are 
called decidual stromal cells that are specialized morpho-
logically and functionally. DSCs play role in identification, 
selection, and acceptance of allogeneic embryos and the in 
development of immune tolerance and protection of semi-
allogeneic fetus [84].

DSCs have similar properties to MSCs, but the ability 
of DSCs in preventing alloreactivity is significantly better 
than other sources of stromal cells, and they have stronger 
immunomodulatory effect in comprise to other sources of 
MSCs [85, 86].

The priorities of DSCs over other sources of MSCs 
include smaller size, higher proliferation rate, higher resist-
ance to oxidative conditions, higher expression of homing 
markers in order to achieve inflammatory target areas, higher 
ability to suppress immunity, much lower differentiation 
potential (highly compatible for using in cell therapy of 
NOA through paracrine and anti-inflammatory pathway), no 
tumorigenesis report, more therapeutic effect, higher sur-
vival rate after freezing, easier access, and the need for cell-
to-cell contact to induce immunomodulatory effects [87–91].

DSCs have been shown to have even higher proliferative 
capacity and greater immunomodulatory properties than 

stromal cells from neonatal tissues such as the amnion and 
chorion [86, 92].

Relying on the above characteristics, DSCs seem to 
be better therapeutic candidates for cell therapy of NOA 
through paracrine and immunomodulatory approach than 
regeneration pathway compared to MSC and other stromal 
cells.

Therefore, DSCs may have higher potential especially for 
treatment of inflammation-related NOA.

Heretofore, DSCs have been used in clinical trials to treat 
graft-versus-host disease (GVHD) and hemorrhagic cysti-
tis [93–95] and COVID-19-induced acute respiratory dis-
tress syndrome (ARDS), and in preclinical settings to treat 
recurrent spontaneous abortion, and have yielded promising 
results in both settings [96].

It also seems that DSCs have a higher potential for fight-
ing inflammation in inflammatory environments, as their 
location and activity is in such an environment with higher 
oxidative stress and inflammatory mediators. Therefore, 
stromal cells from placenta are more suitable candidates for 
the treatment of various inflammatory disorders [97].

To date, mesenchymal-like cells isolated from different 
parts of human placenta including amnion, chorion, and 
decidua have been used in preclinical and clinical studies 
to treat various diseases [98, 99]. Among these, placenta-
derived MSCs (PD-MSCs) have been used for treatment of 
infertility-related diseases such as premature ovarian failure 
(POF) [100–103], testicular failure [104], and male sexual 
problems such as Peyronie’s disease [72] and erectile dys-
function (ED) [73] and have promising results.

MSCs seem to be preferred for use in the regenerative 
pathway due to their superior differentiation properties over 
DSCs, but DSCs are more potent in their immunomodula-
tory properties and are better options for the treatment of 
idiopathic NOA associated with inflammation.

As mentioned in previous section, MSC-derived 
exosomes have very low immunogenicity and tumorigenic-
ity compared to MSCs, with no differentiation potential and 
other superiorities. However, exosomes still have their own 
challenges like culture separation, cell phenotype, and quan-
tification in clinical applications.

Thus, DSCs may be preferred candidates for cell-based 
therapies of NOA by paracrine and anti-inflammatory path-
way, and using this strategy for the NOA treatment in clini-
cal settings is strongly supported.

Scientists stand still at the beginning of the therapeutic path 
using DSCs for inflammatory disorders, and there is a need for 
more preliminary, preclinical, and clinical studies for this pur-
pose. However, given the outstanding preclinical and clinical 
results following the use of DSCs for the treatment of GVHD, 
and hemorrhagic cystitis following HSCT, and ARDS caused 
by COVID-19, as well as the results from preclinical studies in 
animal models of male and female infertility, and on the other 
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hand, with the superiority of DSCs over MSCs, we can hope 
to have a higher potential of DSCs to treat infertility-related 
disorders that are associated with inflammation like idiopathic 
and inflammation-related NOA.

It is noteworthy that, for the sake of safety, the frequency 
of injections, the injected cell dose, and the post-injection 
anticoagulation therapy such as heparin infusion should 
be based on the previous clinical trials similar to those of 
GVHD and COVID-19 ARDS.

Prospects for Future Direction

Currently, the use of new diagnostic and therapeutic technol-
ogies like genomics, proteomics, and artificial intelligence, 
along with conventional therapeutic techniques of surgery 
and hormone therapy, has been promising in the treatment 
of NOA. However, in many cases, this severe form of male 
infertility requires other promising treatments. Cell-based 
therapies of NOA, depending on the etiology, which is struc-
tural defects or idiopathic (one of the main causes of which 
is related to inflammatory factors), can be potentially used 
through differentiation of stem cells (SSCs, ESCs, iPSCs, 
and MSCs) or immunomodulatory effects (MSCs, their 
exosomes, and DSCs), respectively.

Among these, based on the results of in vitro, animal model 
studies, and a clinical trial, MSCs are in the top priority of 
regenerative medicine for treatment of NOA due to their high 
differentiation capacity, high proliferative potential, and simi-
larity to embryonic stem cells of the testes [105].

These fibroblast-like MSCs have also paracrine actions 
and are able to secrete growth factors and signaling mol-
ecules to restore spermatogenesis especially through anti-
inflammatory pathway. However, according to in vitro data, 
preclinical experiences, and recent clinical trials for treat-
ment of inflammation-related disorders such as GVHD and 
ARDS, DSCs have stronger immunomodulatory proper-
ties and some other priorities over MSCs such as higher 
proliferation rate, higher resistance to oxidative conditions, 
smaller size, higher expression of homing markers in order 
to achieve Inflammatory target areas, lower differentiation 
potential, higher survival rate after freezing, easier access, 
and safer and more reliable on the target site due to the need 
for cell-to-cell contact to induce immunomodulatory effects 
[87, 90, 106–108].

As mentioned, regarding MSC-derived exosomes, they 
have anti-inflammatory and paracrine effects just like the 
parents, but they still have their own limitations such as cul-
ture isolation, cell phenotype, and quantification in clinical 
applications [109].

After all, DSCs may be preferred candidates for the treat-
ment of inflammation-related NOA, and using this approach in 
clinical trials for the treatment of NOA is strongly supported. 

Regarding to the safety issue, the injected DSCs doses, injec-
tion frequencies, and anticoagulant therapy after injection must 
be optimized based on previous clinical trials using DSCs in 
other inflammatory-related disorders like GVHD.

Conclusion

Current therapies for patients with non-obstructive azoo-
spermia, if not treated with surgery and hormone therapy, 
are limited and need to retrieve normal and mature sperma-
tozoa. By cell-based therapies of NOA using two approaches 
based on regenerative medicine and the paracrine mecha-
nisms, male germ cell could be produced from different cell 
sources such as SSCs, iPSCs, ESCs, and MSCs in vitro/
in vivo (regenerative medicine), or spermatogenesis could 
be recovered using paracrine effects of secreting stromal 
cells/stromal cell derivatives such as MSCs, MSC-derived 
exosomes, and DSCs. In the regenerative pathway, each 
source of cells that male germ cell differentiate from has 
their own challenges.

In the NOA cell-based therapies by regenerative pathway, 
choosing the right MSC source may not be easy since some 
sources are not capable to differentiate to sperm, but in the 
paracrine pathway, MSCs that have higher immunomodula-
tory effects, such as placenta-derived MSC and endometrium 
MSC, appear to be appropriate sources for this purpose. 
DSCs can be a preferred candidate for NOA cell-based ther-
apies using paracrine and anti-inflammatory approach due 
to superior priorities of DSCs over other sources of MSCs 
and their higher immunomodulatory effects. However, there 
should be more comparing studies between the different cell 
sources for treatment of NOA in vitro and in vivo and clini-
cal trials to translate preclinical results to the clinic. On the 
other hand, challenges regarding methods for cell isolation, 
culture, and complications of achieving an appropriate and 
safe cell source should be somewhat resolved in order to take 
firm and serious steps in cell therapy of NOA.
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